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EDITORIAL

Complement component 3: a new paradigm in tuberculosis vaccine
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aSaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain; bDepartment of Veterinary
Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA; cDepartamento de Sanidad Animal,
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ABSTRACT
Vaccines are critical for the control of tuberculosis (TB) affecting humans and animals worldwide.
First-generation vaccines protect from active TB but new vaccines are required to protect against
pulmonary disease and infection. Recent advances in post-genomics technologies have allowed
the characterization of host–pathogen interactions to discover new protective antigens and
mechanisms to develop more effective vaccines against TB. Studies in the wild boar model
resulted in the identification of complement component 3 (C3) as a natural correlate of protec-
tion against TB. Oral immunization with heat-inactivated mycobacteria protected wild boar
against TB and showed that C3 plays a central role in protection. These results point at C3 as a
target to develop novel vaccine formulations for more effective protection against TB in humans
and animals.
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Tuberculosis (TB) is a pandemic caused
by members of the Mycobacterium
tuberculosis complex (MTBC) infecting
2.5 billion people worldwide with 1–13
million with TB.[1] Additionally, animal
TB affects cattle industry and wildlife
management and conservation; there-
fore, vaccines are required for TB con-
trol in reservoir host species involved in
pathogen transmission cycle to cattle
and wildlife.[2] The widely used
Mycobacterium bovis Bacillus Calmette–
Guérin (BCG) vaccine and other first-
generation vaccines protect against
some forms of TB but are not 100%
efficacious in humans and new vaccines
are required to protect against pulmon-
ary disease and infection.[3,4]
Additionally, although BCG may be
effective against animal TB,[2] its use
in animals may interfere with tuberculin
skin test for TB diagnosis in eradication

programs. Despite the fact that vaccines are among the
best achievements in science, new strategies for vac-
cine development need to be conceived to increase
possibilities for developing effective vaccines for TB

control. These new strategies may benefit from latest
post-genomics technologies to explore new possibili-
ties for the discovery of new protective antigens and
mechanisms to develop more effective vaccines for the
control of TB in humans and animals.

Wild boar are natural reservoir hosts for MTBC in
some regions and a model for mycobacterial infection
and TB reproducing some of the clinical characteristics
observed in human cases such as lung pathology and
latent infection.[5] Recently, the characterization of the
molecular interactions between wild boar and M. bovis
showed that upregulation of genes encoding for com-
plement component 3 (C3) and other innate and adap-
tive immune response proteins in lymph nodes and
tonsils correlates with resistance to natural mycobacter-
ial infection.[6,7] These results in the wild boar TB
model were obtained using transcriptomics and proteo-
mics approaches for the identification of natural corre-
lates of protection against TB but resulted in the
identification of a well-known component of the innate
immune response such as C3. Consequently, these
results prompted the question addressed here on how
the C3-mediated protective mechanism could be used
to develop more effective vaccines for TB control.

Bordet and Gengou recognized in 1901 the com-
plement system as an important component of host
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protection against infection [8] and since then its role
in infectious diseases has been well characterized.[9]
C3 activation is required for both classical and alter-
native complement activation pathways, which have
been shown to be involved in innate immune defense
against several microorganisms including mycobac-
teria.[9–11] Additionally, the complement system
links innate and adaptive immunity through C3
enhancement of antigen delivery to B cells.[12] Not
surprisingly, certain bacterial inhibitors have evolved
to act by blocking C3 activation and have been pro-
posed as candidate protective antigens for vaccina-
tion against infectious diseases.[13] C3
opsonophagocytosis by macrophages results in the
inhibition of bactericidal responses and survival of
mycobacteria [14] while complement receptor CR3-
mediated nonopsonic phagocytosis of mycobacteria
may be essential for infection of macrophages after
inhalation of mycobacteria.[15]

The connection between TB and C3 came from its
role in innate immunity. Initial experiments using BCG
demonstrated that infected mice develop an effective
cell-mediated immune response that depends on sen-
sitization with live organisms and require a secondary
antigenic challenge that is antigen-specific and cannot
be replaced by a nonspecific inflammatory stimulus.[16]
In the wild boar model, immunization with BCG induces
the increase in peripheral blood mononuclear cell
(PBMC) C3 mRNA levels before infection with M. bovis.
[2,17,18]

Recently, parenteral and oral immunization with
heat-inactivated M. bovis protected wild boar against
TB with special reduction in thoracic lesions,[2,10] sug-
gesting that this approach might provide a novel vac-
cine for TB control with special impact on the
prevention of pulmonary disease, which is one of the
limitations of current vaccines.[4] Additionally, the
immunotherapeutic use of heat killed Mycobacterium
vaccae as an adjunct to anti-TB treatment in previously
treated and untreated patients, multidrug-resistant TB
patients and as a preventive agent for people at high
risk for TB has provided evidence for its effectiveness
through enhancement of cellular immune function by
several mechanisms including regulation of comple-
ment system.[19] These experiments showed that C3
plays a central role in the protective mechanism elicited
after oral immunization with heat-inactivated M. bovis
in wild boar, resulting in C3 upregulation at both PBMC
mRNA and serum protein levels.[10] Furthermore, a
positive correlation was obtained between C3 mRNA
and protein levels and the reduction in lesion and
culture score after infection with M. bovis.[10] These
results suggested a protective mechanism by which

natural resistance to TB is enhanced in response to
the oral immunization of wild boar with heat-inacti-
vated M. bovis. The proposed protective mechanism in
response to immunization of wild boar with heat-inac-
tivated M. bovis in the absence of adjuvant includes the
activation of dendritic cells (DCs) by pathogen-asso-
ciated molecular patterns (PAMPs) present in the vac-
cine formulation through a surface Toll-like receptor
(TLR), which triggers signaling cascades that lead to
the transcription of genes encoding pro-inflammatory
cytokines such as Interleukin-1 beta (IL-1b) that stimu-
lates the production of C3 by DCs and other innate
immune cells.[10]

The results of these experiments support the
hypothesis that higher C3 levels may allow increased
opsonophagocytosis and effective bacterial clearance,
while interfering with complement receptors (CR3)-
mediated opsonic and nonopsonic phagocytosis of
mycobacteria, a process that could be enhanced by
other mechanisms stimulating the production of C3,
IL-1b and other cytokines by DC and other innate
immune cells.[10] These mechanisms may include
adaptive features of innate immune response related
to C3 and IL-1b that could also contribute to increase
vaccine efficacy against mycobacterial infection.[20]

In summary, these results suggest that C3 plays a
central role in protection against TB after oral immuni-
zation with heat-inactivated M. bovis in the wild boar
model and with heat-killed M. vaccae in humans. The
upregulation of C3-coding gene expression in lymph
nodes and tonsils correlates with resistance to TB in
wild boar and this mechanism may be enhanced by
immunization with heat-inactivated M. bovis to protect
animals against mycobacterial infection and pulmonary
disease. These results were obtained using the wild
boar TB model reproducing some of the clinical char-
acteristics observed in humans and may therefore be
relevant for humans and probably other animal species.
The C3-mediated mechanism challenges the standard
assumptions on TB vaccination that for decades has
ruled out both the use of inactivated bacteria and
vaccine delivery by the oral route. Future research
directions should include the development of novel
vaccine formulations to increase the impact of immuni-
zation on the levels of C3, IL-1b and other cytokines for
more effective protection against mycobacterial infec-
tion and TB. These results also point at a more relevant
role of nonspecific innate immune responses in protec-
tion against TB for which C3 might be a readily avail-
able indicator to develop novel vaccine formulations
against TB for humans and animals as well as a surro-
gate of protection when antigen-specific immune
responses are not effective.
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